Kibble–Slepian formula and generating functions for 2D polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

tutte polynomials of wheels via generating functions

we find an explicit expression of the tutte polynomial of an $n$-fan. we also find a formula of the tutte polynomial of an $n$-wheel in terms of the tutte polynomial of $n$-fans. finally, we give an alternative expression of the tutte polynomial of an $n$-wheel and then prove the explicit formula for the tutte polynomial of an $n$-wheel.

متن کامل

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize the probability distributions of finite all order moments having generating functions for orthogonal polynomials of ultraspherical type. 1. Motivation: Meixner families There is a one to one correspondance between probability distributions on the real line and polynomials of a one variable satisfying a three-terms recurrence relation subject to some positive conditions ([9]). Th...

متن کامل

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize, up to a conjecture, probability distributions of finite all order moments with ultraspherical type generating functions for orthogonal polynomials. 1. Motivation: Meixner families There is a one to one correspondance between probability distributions on the real line and polynomials of a one variable satisfying a three-terms recurrence relation subject to some positivity condit...

متن کامل

Multilinear generating functions for Charlier polynomials

Charlier configurations provide a combinatorial model for Charlier polynomials. We use this model to give a combinatorial proof of a multilinear generating function for Charlier polynomials. As special cases of the multilinear generating function, we obtain the bilinear generating function for Charlier polynomials and formulas for derangements.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2016

ISSN: 0196-8858

DOI: 10.1016/j.aam.2016.05.003